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We study the effect of product approxtmatton on the Galerkm solutrons of the one-dtmen- 
stonal cubtc Schrodmger equatton A Crank-Ntcolson scheme ts used to drscretlze in ttme 
The paper descrrbes two numertcal experiments. m the first, we examme the approxtmatton 
obtained by the standard Galerkm method and dtscuss the posstblhty of enforcing dtscrete 
analogs of the conservatton laws sattstied by the exact solution, m the second experiment, 
numerlcal results obtamed by the product approxtmatlon version of the Galerkm method are 
compared and the effectiveness of the method for different combmatlons of test and trial 
functtons IS also mvesttgated fp 1988 Academtc Press. Inc 

1. INTRODUCTION 

While the Galerkin method plays an important role in the theory of nonlinear 
evolution equations, it is seldom used in its original standard form as a com- 
putational procedure. Product approximation is a technique which consists of 
replacing the nonlinear term by its interpolant in the finite-dimensional space [l]. 
This leads to a simplified version of the Galerkin method which removes the need 
for numerical quadrature in the evaluation of the inner products. The Galerkin 
method with product approximation has been applied to a number of nonlinear 
problems [S] including the Kortewegde Vries equation and the nonlinear 
Schrodinger equation [3,4]. 

The purpose of our present study is to compare the Galerkin method and its 
modified version using product approximation, as applied to the one-dimensional 
cubic Schriidinger equation (henceforth CSE): 

2 

ig+g+ lul%=O xfz[W, t>O, i=&i 

4% 0) =f(x) XE R, 
(1.1) 

where the solution u is complex-valued and f is some sufficiently smooth function 
which decreases exponentially as (x1 tends to infinity. 

We have chosen this model equation for the following reasons: 
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104 TOURIGNY AND MORRIS 

(1) The CSE is one of the few nonlinear equations for which an implemen- 
tation of the standard Galerkin method is still manageable. 

(2) Much is known, both computationally and theoretically about the 
equation. A convenient feature of the solution is that it satisfies an infinite number 
of conservation laws [8] including 

E,(f)=/ lu(x, t)l*d?c=const 
R 

for all t 20 (1.2) 

E2w=JR {;I; I2 l (x, t) -z lu(x, ?)I4 dx = const > forall t>O. (1.3) 

These provide us with a simple means of analysing the numerical results. 
(3) The CSE is only one particular member of a wider family of nonlinear 

Schrodinger equations. These equations have found many applications in science 
and should be of general interest. A conclusion about the effectiveness of the 
numerical scheme for the CSE may lead to an efficient scheme for the solution m 
the general case. 

In Section 2, we introduce the notation and derive the approximation methods. 
In Section 3, we state what and in what sense these methods are meant to 
approximate and how we propose to judge the quality of the approximation. In 
Section 4, we examine the numerical results obtained by the standard Galerkin 
method. We devote some time to the question (which, for the CSE, is of impor- 
tance) as to whether or not the enforcement of discrete analogs of the conservation 
properties is advisable. Finally, in Section 5, we turn to the Galerkin method using 
product approximation. Numerical results are compared and we also consider dif- 
ferent choices of test and trial functions. 

A Galerkin method leads to a spatial discretization of the original equation and 
there remains to discretize in time. Naturally, our results will be affected by the way 
in which this is done. We have opted for a simple Crank-Nicolson scheme which 
will be used uniformly throughout. We study spatial convergence for a fixed time 
step. 

2. THE GALERKIN METHODS 

We make the hypothesis that the solution of (1.1) has compact support on a 
bounded open interval I= ]a, b[ during the time period [0, T], where T is positive 
and finite. Under this assumption, (1.1) is equivalent to 

2 

ig+g+ lu12u=0 xEz,Obr<T 

4x7 0) =f(x) XEI 

u(a, t) = u(b, t) = 0 O<t<T; 
(2.1) is the problem we are going to solve 
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We have to deal with complex-valued functions defined on I. L’(Z) = L2 denotes 
the space of square integrable functions. H’(I) = H’ consists of the elements of L2 
which have a square integrable distributional derivative. HA(I) = HA is the subspace 
of H’ formed by those elements which vanish at the endpoints of I. We use the 
norms 

where (u, o ) = f, uV dx is the inner product in L2 and u’ denotes the distributional 
derivative of U. 

Let {S,} be a sequence of finite-dimensional subspaces of HA such that 

30 
u S, is dense in HA. 

n= I 

We denote by v the dimension of S,. If {d,})f’=, forms a basis of S,, we write 
S, = [d,, .., 4,,]. The standard Galerkin method for (2.1) consists of defining a 
sequence {u,} where the general term u,: [0, T] + S, written as 

%7(t)= i a,(t) 4,* a,(t) E c 
,= I 

satislies 

i(42(tL 4) - (4(t), 4’) + ~14i~)12 u,(t). 4) =o for all 4 E S, 

&z(O) =A,. 
(2.2) 

The dot indicates differentiation with respect to time and f,, is the general term of a 
sequence converging to f in HA. 

Equation (2.2) constitutes a system of ordinary differential equations m time for 
the unknown coefficients a,(t). We introduce the uniform time grid 
o=t,<t,< ... <t,= T of gridsize At = TIM, where ME N. 

If u; = c,“=, a,“4, denotes an approximation to u,(t,), the Crank-Nicolson 
scheme for Eq. (2.2) is obtained by replacing z&(t) by (l/At)(u;+’ -u;) and u,(t) 
by +( u; + ’ + u;): 

i -J&,.1 ( -lq),d > ( - ;(,,I + u:: 1’9 4’ > 

+ f(u,+~+~~)~2~(~~+l+Um),m)=0 (I 
for all YES,,, m=O, l,..., M- 1, 

llI)=f". (2.3) 
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We briefly discuss the construction of the subspaces S, c HA. Introduce the uniform 
partition 

A,:a=x,<x,< ... cx,+,=b 

and let h = (b - a)/(n + 1). 
With this partition, we may define finite-dimensional spaces of polynomial sphnes 

and therefore give a precise meaning to the notions of interpolation and interpolant 
[7]. We shall need the following standard polynomial spline spaces: 

(1) Piecewise linear functions. We use a basis with typical element 

i 
(x-x,-,) 

h ’ 
X,-l <x<x,, 

*~,u,QXdX,+,, 
otherwise. 

(2) Cubic splines. We use a basis with typical element B,(x) = 
B( (x - x, - *)/h), where 

i(x + 2)‘, -2<xb -1, 
i(x+2)3 -2(x+ 1)3, -l<x<O, 
&x+2)34(-x+ l)‘, o<x< 1, 
+x+2)3, l<xX2, 

0, otherwise. 

(3) Hermite cubits. Typical basis functions are R,(x) = R((x - x,)/h) and 
7’,(x) = T( (x - x,)/h), where 

I 

(1 +x)2(1-2x), -l<x<O, 
R(x)= (l-x)2(1+2x), O<xGl, 

0, otherwise; 

x(x + I)*, -l<x<O, 
T(x) = x(x + 1)2, o<x< 1, 

0, otherwise. 

Having chosen a particular spline space, S, will consist of those elements which 
vanish at the endpoints of I. 



THEEFFECTOFPRODUCTAPPROXIMATION 107 

Noting that u; = I;=, a,“d,, it is quite obvrous that the implementation of a 
scheme like (2.3) involves tedious calculations, even when the basis functions 4, 
vanish outside a small subinterval of I. The Galerkin method with product 
approximation consists of defining a sequence of functions such that the general 
term u,(t) = c;= L a,( t ) 4, satisfies 

l<&(t), 4) - (4(t), 4) + <l’,(r)7 4) =o for all 4 E S, 
(2.4) 

%8(O) =fn, 

where r,(t) is the mterpolant of lu,(t)12u,(t) in S, (hence a linear combination of 
the 4,‘s). The time discretized version of (2.4) 1s 

1 --#;+’ 
( 

1 
-u;),qs 

> ( 
- ;(,,I + u;)‘, 4’ 

> 
+ ()I,*, 4) = 0 

for all 4 E S,, m = 0, . . . . M - 1, (2.5) 

uZ=f,, 

where II,* is the interpolant of /f(~; + ’ + u;)l’ f(~; + L + UT). 

3. SPATIAL CONVERGENCE 

We study the convergence of the Galerkin methods (2.3) (2.5) for a fixed ttme 
step At as n tends to infinity. We make the assumption that there is only one set 
{ 2, . . . . u”} u HA such that 

We define 

Ey= 
I 

(urnI dx 
I 

The two quantities 

ET”= 
I lu;12 dx 
I 

/ 

forall c$EH&m=O ,..., M-l, (3.1) 

ldO=f: 

and ET= 
I 
I {~~(u~)‘(~-$P’~~~ dx. 

and ET’“= 
s 

(~~(u~)‘~~-$u~~~} dx 
I 
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are of fundamental importance, for their behaviour entirely determines the quality 
of the approximation. A proof of the following lemma can be found in [6]. 

LEMMA (Characterization of spatial convergence). Let {u’, . . . . u”} be the 
solution of Eq. (3.1) and { uz, . . . . u,“} the solution of Eq. (2.3). These two statements 
are equwalen I: 

lim En,“’ - 1 -EY and lim E>” = E’;, m = 0, 1, ..,, A4, 
n-* n--x 

lim 1) u; - urn II Hi = 0, m = 0, 1, . . . . M. 
n-r 

Moreover, if IE;,“‘) is uniformly bounded in n and m, we have 

lim IIu~-u~~(~z=O, m = 0, . . . . M. (3.2) ,I - J; 

It will come as a reassuring, though perhaps not unexpected fact, that this result 
remains valid for the Galerkin method with product approximation and piecewise 
linear functions as test and trial functions. In this case, however, (3.2) requires the 
additional hypothesis that also E;*” be uniformly bounded. 

This brings to our attention the advantage of discrete analogs of the conservation 
laws (1.2), (1.3). For instance, the approximating sequence defined by the standard 
Galerkin method (2.3) is such that 

En,” + 1 = En,” 
1 1 3 m=O, 1, . . . . M- 1, (3.3) 

::+‘12-lu;12)d-~, m = 0, . . . . M - 1. (3.4) 

Equation (3.3) is achieved by setting 4 = u;’ ’ + u; in (2.3) and taking the 
imaginary part; (3.4) is achteved by setting 4 = u;+ ’ - u; in (2.3) and taking the 
real part. 

We can ascribe the fact that the solution of (2.3) fails to satisfy the discrete 
analog of (1.3) to the use of the Crank-Nicolson scheme. It can easily be seen that 
the solution of (2.5) satisfies neither of the analogs of (1.2) and (1.3). This is 
inherent in the use of product approximation. However, as the above lemma 
indicates, the absence of discrete analogs of the conservation laws does not rule out 
spatial convergence. 

Besides, the difficulty of satisfying discrete conservation laws like (3.3) in practice 
while dealing with nonlinear systems of algebraic equations has long been 
recognized [2]. As we shall demonstrate in our first numerical experiment, it is not 
always advisable to alter a numerical method for the sake of enforcing a conser- 
vation law. 

Another point of interest is that we have no information about the validity of our 
lemma for the method (2.5) when the subspaces do not consist of piecewise linear 
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functions. It will be the purpose of our second numerical experiment to investigate 
whether or not ptecewise linear functions represent the most efficient chotce. 

4. FIRST NUMERICAL EXPERIMENT 

In this section, we use the standard Galerkin method with piecewise linear 
functions for the numerical solution of the CSE. Let 

_U,(t) = i !%,(I) 4,, where g,( t ) = Re q(t) 
,= I [ 1 Im a,(t) 

‘(_u,, ) = (_u,‘_un) &I 1 where A = 
0 1 c 1 -1 0’ 

With (a),=~,, (2.2) assumes the matrix form 

M@+Sg+N(g)=O. (4.1) 

In this expression, M and S are the obvious mass and stiffness matrices of order v 
having matrices of order 2 as elements, and 

W(a)!, = (2’@nM,I). 

For the solution of (2.3), we adopt the following predictor-corrector pair 

k&z* = Mg” - At(Sg” + N(g”)) 

The initial vector a0 is obtained readily from the interpolant of the initial condition 
f(x). 

For piecewise linear functions, M and S are clearly tridiagonal matrices of order 
v = n = (b - a)/h - 1. This scheme requires that M and M+ (dr/2) S be factorized. 
This need be done only once and the LU decomposition can be kept in storage. At 
each time step, 2 backward-forward solves must be performed. For piecewise linear 
functions, M and S are clearly tridiagonal matrices of order n. Thus, each fac- 
torization requires 18n operations (an operation being either a division or a mul- 
tiplication) while the forward-backward solution requires 12n operations. All in all, 
the algorithm involves (36 + 24( T/At)) n operations. For our numerical experiment, 
we choose as the initial condition 

with c, = 10, c,=&,andi=J-1. 
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FIG I Standard Galerkm solution Predlctor<orrector (I Iteration), h = 4, r = & (a) modulus from 
0 to 50 s, (b) modulus from 22 to 27 s, (c) the two quantities m time 
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FIGURE I-Contmued 

This initial condition has the following interpretation: two wave forms (or solitons) 
are separated by a distance of 25 units. As ttme progresses, the faster soliton 
(velocity cl) eventually catches up with the slower one (velocity c2) and, according 
to soliton theory [8], passes through it with only a phase shift resulting from the 
collision. 

To allow sufficient room for the interaction to take place, we choose ] -20, 80[ 
as the space interval and compute the solution for 0 G t < 50. We implemented our 
scheme and ran the program with h = 4 and At = &, using one iteration of the 
corrector. The results are depicted in Figs. la, b, and c. They are in qualitative 
agreement with the behaviour predicted by the theory. The two wave forms collide 
but recover their shapes afterwards (Fig. la) despite a strongly nonlinear interac- 
tion (Fig. lb). The evolution of the two quantities E;,” and E:” in time is given by 
Fig. lc. The first quantity (full line) and the second quantity (broken line) have 
been shifted to & and &, respectively, for convenience. Interestingly enough, we 
observe the following behaviour: the first quantity grows when the second decays 
and conversely. The two quantities evolve linearly before and after the interaction 
but experience a jump during the interaction. Figure 2 (a, b, and c) depicts the 
results obtained with two iterations of the corrector. The additional iteration has a 
significant effect on the phase of the solution and also on the general behaviour of 
the two quantities. 

581 76.1-8 
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FIG 2 Standard Galerkm solutlon Predlctorxorrector (2 Iterations), h = f, T = & (a) modulus 
from 0 to 50 s, (b) modulus from 22 to 27 s, (c) the two quantltles m time. 



THE EFFECT OF PRODUCT APPROXIMATION 113 

: D 

30 - o- 
0 

,_________-_____-_.----~-.-.------------- 

,_~~~--__~-_______--~~------------------’ 
#’ 

0 

I I I ! 
0.0 10.0 70.0 30.0 40.0 SO.0 

t 

FIGURE 2-Conmued 

In view of the fact that the approximation scheme (2.3) is such that 
E”,” + 1 = En,” the fluctuations in the first quantity as shown in Figs. lc and 2c 
piint out the’difliculty of reproducing the conservation laws in practice while solv- 
ing nonlinear systems. This seems to have stimulated the search for methods which 
enforce conservation properties. For instance, Herbst et al. [4] implemented a 
method with a variable time step able to preserve the first quantity exactly at each 
time step. However, the method was found to be of little practical use because 
nothing prevents the time step from decreasing to zero or, even worse, assuming 
negative values. 

In the remainder of this section, we present a method of Newton type which will 
preserve the first quantity exactly at each time step. We should therefore be in a 
position to decide whether such a special scheme presents some computational 
advantage. 

Suppose we decide to solve (2.3) by means of Newton’s iteration. The function to 
iterate is 

F(g”,_z)= M+d’S _z- M-d’s g”+AtN 
( 2 > ( 2 > 

where a” is kept fixed during the iteration process. Let J(am, g) be the jacobian 
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FIG 3 Standard Galerkm solution Modltied Newton method, h = ), 5 = &. (a) modulus from 0 to 
50 s; (b) modulus from 22 to 27 s, (c) the two quantltles m time 
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FIGURE 3-Conrmued 

matrix of F(a”, _z). Choosing am = _z, as a starting value, the iteration sequence is 
generated through 

gk+, =ZktJ(Qm, gk))-‘F(@m, zk)* 

Noting that the first quantity Ey”’ takes the algebraic form 

Ey” = (gm)=Mgm 

We wtll not have g:Mz, = g:+, Mzk+, f or each k, but only as k + co. Therefore, we 
adopt a modified Newton method by introducing a matrix P and consider the 
sequence defined by 

Ik+l--k= -PtJt@m, gk))-‘Ftam, zk). 

Premultiply by M 

M(&+, -gk) = - MP(J(a”, &))-‘F(am, ;k). 

Then by (zk + L +z,)~. Noting that M is symmetric, this yields 

-Z:+,MZk+l -g;fb’f& = - (&+, +=‘k)TMP(e&$m, &))-‘F(am, &) 
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FIG 4. Standard Galerkm solution Newton Method, h=& 5= & (a) modulus from 0 to 50 s, 
(b) modulus from 22 to 27 s, (c) the two quantltles m time 
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;;7 
0.0 IO 0 20 0 30 0 40.0 50.0 

We require that the right-hand side be zero. Substttuting for (zk + r + _zk) gives 

C&k -Pm!“, z,))-‘m”, zk)lT~ww, ,-,))r’&“, Zk) =o 

and this provides a condition on the matrix P. Some choices of P are trivial and we 
require that the entire expresston vanish, not only part of it. For instance, assume 
P = diag(lr), where R is a scalar. Then, letting 

We see that 

$Wk 
==2-fik. 

Using the same initial condition, we ran the program with h = 4 and Ar = 6. The 
iteration process was to be terminated whenever 

III k+l -gkll <&= 10-4. 

The results (Fig. 3a, b, and c) show that the first quantity was indeed exactly 
conserved. Typically, the first iteratton was performed with rc z 1 (rr = 1 is the 
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FIG. 5. Standard Galerkm solutlon Newton Method, h=f, T= js (a) modulus from 0 to 5Os, 

(b) modulus from 22 to 27 s, (c) the two quantltles m time 
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FIGURE 5-Conttnued 

standard Newton method). After that, rc would vary consistently between IO-’ and 
102. During the interaction, up to 3 iterations were needed but, otherwise, the 
tolerance was met in two iterations. While the first quantity is exactly conserved, we 
notice that the second quantity fluctuates a little. These variations tend to grow in 
the last seconds (Fig. 3~). 

For the sake of comparison, we also ran the standard Newton method 
(Fig. 4a, b, c). The two quantities are very well behaved (Fig. 4c: the first quantity is 
(very nearly) conserved at each time step and the second quantity does not 
experience a sudden growth in the last seconds. A reduction to At = & indicates that 
the standard Newton method produces the best solution (Fig. 5a, b, c). 

From these facts, we conclude that our modified Newton method presents little 
advantage upon the standard one. In fact, the bahaviour of the second quantity 
should serve as a warning: a method designed to preserve the first quantity exactly 
may cause perturbations in the second quantity. Our lemma of Section 3 shows that 
the two quantities are equally important, therefore such schemes could perform 
poorly. 
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5. SECOND NUMERICAL EXPERIMENT 

In this section, we examine the numerical performance of the modified version of 
the Galerkin method using product approximation. We use the same notation as 
before. 

Product approximation consists of replacing y by its interpolant. Thus, when 
piecewise linear functions are used, this interpolant is simply 

and (2.4) assumes the matrix form 

Mcj+SrJ+MF(cz)=O (5.1) 

We note that the nonlinear term, in its simplicity, does not involve the tedious 
manipulations of the standard Galerkin method. We use the same predictorrcorrec- 
tor patr as before for the solution of (2.5). With one iteration of the corrector, the 
integration in time will again require (36 + 24( T/At)) n operations. 

A pleasant feature of the product approximation version of the Galerkin method 
is that the use of other polynomial splines becomes attractive: (5.1) allows the 
programmer to implement the method for basis functions which have a larger sup- 
port. It is natural to investtgate whether more efficiency could be obtained through 
an alternative choice of test and trial functions. When the method uses Hermite 
cubits, the finite dimensional subspace is’ 

S, = CR,, T,, . . . . R,, T,l. 

The Galerkin solution takes the form 

&z(l) = i kJtt) RJ + F,,(t) T/) 

/=I 

and product approximation will lead to the system of ordinary differential 
equations 

Mg+S_5+MU()=O, 

where 

and 

’ It IS understood that the basis functrons at the extremlttes of the Interval ]a. b[ niust be such as to 
satisfy the boundary condltton It IS clear how thts IS achteved from the delimtton of a typical basis 
function as gtven m Sectlon 2 
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where B is the Jacobian matrix of y. A4 and S may be viewed as scalar matrices of 
order 4n. They are band matrices-with seven lower codiagonals and seven upper 
codiagonals. We find that the factorization of such a matrix requires 224n 
operations. The forward-backward solution is performed in 60n operations. Thus, 
the number of operations involved in the time integration process is 

448+ 120; 448+ 120:)(?- 1). 

Let us now turn to cubic splines. Because the interpolation formula associated 
with this choice of basis functions involves the solution of a linear system of 
equations, the technique of product approximation cannot be used. However, this 
difficulty is avoided by using piecewise linear functions as basis functions and cubic 
splines as test functions. This is an instance of a Petrov-Galerkin method where test 
and trial functions do not belong to the same piecewise polynomial space. For the 
test functions, we wish to have a basis with only n elements. So we take* 

Tn = LB,, . . . . B,,+zl. 

Thus Petrov-Galerkin method may be written 

2 i,,(t)(4,, &)--A 2 rw,(fKd;, B;) + i r(~,(~)Kd,~ Bk) =O 
/=I J=l /=I- 

for k = 3, . . . . n - 2. In matrix form 

Jw+Sg+MF(g)=O, 

TABLE I 

Number of Operations and Efficiency Condltlon 

Method Number of operations Effbency condltlon 

(I-I) (36+*‘@+1) - 

(h-h) (4lg+U0~)(~-,> h,>5h, 

(I-c) (100+4C$)(~-1) h,>;h, 

‘There IS a shghtly modified version of our lemma of Sectlon 3 for this PetrovCIalerkm method The 
set {& , u”} satlsties (3 I) only for all q5 m the closure of U.=, T, m HA This IS simply due to the fact 
that U;=:=, T. 1s not dense m HA [6] 
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FIG. 6. Galerkm solutlon with product approxlmatlon Predictor-corrector (I iteration), h = a, 
r=b (a) modulus from 0 to 50s; (b) modulus from 22 to 27 s. (c) the two quantltles in time. 
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FIGURE bConrmued 

where M and S are now quindiagonal with blocks of order 2. The factorizatton 
requires 50n operations; the backward-forward solution requires 20n operations. 
The number of operations required for the time integration is therefore 

(100+40-9(~- 1). 

To each particular choice of basis functions, we have attached a number of 
operations required for the integration in time. This number will provide a quan- 

TABLE II 

Results of the Expenment 

Method Etliclency condltlon Optlmal grid size Elliclency 

hh>s 

k>& 

Worse 

Better 
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FIG 7. Galerkm solution with product approxtmatlon. Predtctor-corrector (2 iterations), h = 4, 
T = 8: (a) modulus from 0 to 50 s, (b) modulus from 22 to 27 s; (c) the two quantlttes in time 
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FWJRE 7--Contmued 

titative criterion upon which to base a comparison and judge the relative perfor- 
mance of the schemes. In order to avoid confusion, we make the following pseudo- 
definitions: 

Given a fixed value of At, a method will be said to conoerge zn space for h = h(dt) 
if a further reduction of h has no perceptible effect on the plots of the numerical 
solution. &It) is then said to be the optimal grid size. For fixed T, At, and interval 
I= ]a, b[, the number of operations is a function of h only. We shall say that the 
most efficient method is the one for which convergence in space occurs for the least 
number of operations. Take, for instance, the Galerkin method with product 
approximation and piecewise linear functions as test and trial functions. For the 
sake of brevity, it will be denoted (l-l). The number of operations was found to be 

(36+24;)(7- 1). 

Now, take for example the (h-h) method (i.e., Hermtte cubits as test and trial 
function). There, the number of operations involved was 

( 448 + 120 g)(y- 1). 
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FIG 8. Petrov-Galerkm solutlon with product approxlmatlon Predictor-corrector (1 rteratlon), 

h = f, r =&a: (a) modulus from 0 to 50 s, (b) modulus from 22 to 27 s, (c) the two quantltles m time 
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FIGURE 8-Conttnued 

Thus, if h, and h, are the optimal grid size for (l-l) and (h-h), respectively, the 
(h-h) method will be more efficient only if 

( 448+120;)(+)<(36+24;)(+1). 

That is 
h,(b -a - hh) 36 At + 24T 
h,(b-a-h,)<448 At+ 120T’ 

but since h and At are small quantities 

In other words, the extra complexity will be worth our while only if we can use a 
grid 5 times coarser than for the piecewise linear functions. We do the same 
calculation for the (l-c) method and obtain Table I, where the last column 
tabulates the condition that the optimal grid sizes must fulfill in order for the 
methods to be more efficient than (l-l). 
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FIG 9. Petrov4alerkm solution with product approximation Predictor-corrector (2 Iterations), 
h=+, r =h: (a) modulus from 0 to 5Os, (b) modulus from 22 to 27s, (c) the two quantltles m time. 
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r I I I I I 

c 1.0 10.0 200 30 0 10.0 50.0 

FIGURE 9-Conrmued 

Before we go to the actual numerical experiments, let us remark that the number 
of operations required for the factorization of matrices plays no role in the com- 
parison. Indeed, factorization is performed only once when the predictor-corrector 
pair is used. The situaton would be different if we used, say, Newton’s iteration. 

We ran our programs with the same imtial condition as in Section 4: 
I = ] -20, 80[, T= 50, and At = A. Table II summarizes the results. Comparing 
Fig. 1 (the standard Galerkin method with piecewise linear functions) and Fig. 6 
(product approximation (l-l)), it appears that the two methods produce very 
similar results. Even if the behaviour of the first quantity is somewhat different 
(Fig. lc and Fig. 6c), the fluctuations in both cases are equally smooth. 

The Hermite cubits failed to meet the requirements. There is a significant dis- 
crepancy between the accuracy gamed and the work involved. The weakness of the 
Hermtte cubits may be attributed to the fact that it yields superfluous information; 
namely the value of the x-derivative, which is not needed here. This doubles the 
order of the system to be solved. 

However, the (l-c) method performed well and seems to be slightly more efficient 
than the (l-l) method. It (Figs. 8a, b, and c) compared well with the standard 
Galerkm method (Figs. la, b, and c) despite the fact that the two quantities 
(Fig. 8c) undergo considerable fluctuations. We also tested our results with two 
iterations of the corrector (Figs. 7a, b, c; Figs. 9a, b, c). It appears that product 
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approximation, in spite of the absence of conservation properties, is a valuable 
alternative to the standard Galerkin method. 

6. CONCLUSION 

The purpose of this work was to study the effect of the product approximation 
on the Galerkin solutions of the one-dimensional cubic Schriidinger equation. A 
Crank-Nicolson scheme was used to discretize in time and the resulting nonlinear 
system of algebraic equations was solved using a predictorcorrector pair. Under 
these circumstances, we have found that, provided piecewise linear functions were 
used as test functions, the product approximation version of the Galerkin method 
produces results which compare well with those obtained by the standard Galerkin 
method. Numerical experiments also suggests that more efficiency might be 
obtained by using piecewise linear functions as trial functions and cubic splines as 
test functions, even though in this case the two quantities ET"' and E?"' undergo 
considerable fluctuations. 

Although we have restricted our attention to one particular nonlinear partial dif- 
ferential equation, the conclusions reached in this study lead us to the followmg 
conjecture: In the case where we are given a nonlinear problem for which the stan- 
dard Galerkin method converges in space (in a sense to be specified), the authors 
expect that the product approximation version of the Galerkin method would 
produce similar results, provided the numerical solutions remain uniformly boun- 
ded in some suitable norm. 

Other types of nonlinearity should be investigated. Two-dimensional problems 
would also be of considerable interest. 
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