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We study the effect of product approximation on the Galerkin solutions of the one-dimen-
sional cubic Schrodinger equation A Crank-Nicolson scheme 1s used to discretize in time
The paper describes two numerical experniments' in the first, we examine the approximation
obtamned by the standard Galerkin method and discuss the possibility of enforcing discrete
analogs of the conservation laws satisfied by the exact solution, in the second experiment,
numerical results obtained by the product approximation version of the Galerkin method are
compared and the effectiveness of the method for different combinations of test and tnal
functions 1s also investigated 1 1988 Academic Press, Inc

1. INTRODUCTION

While the Galerkin method plays an important role in the theory of nonlinear
evolution equations, it is seldom used in its original standard form as a com-
putational procedure. Product approximation is a technique which consists of
replacing the nonlinear term by its interpolant in the finite-dimensional space [1].
This leads to a simplified version of the Galerkin method which removes the need
for numerical quadrature in the evaluation of the inner products. The Galerkin
method with product approximation has been applied to a number of nonlinear
problems [5] including the Korteweg—de Vries equation and the nonlinear
Schrodinger equation [3, 4].

The purpose of our present study is to compare the Galerkin method and its
modified version using product approximation, as applied to the one-dimensional
cubic Schrédinger equation (henceforth CSE):

ou o
ia—l;+a—:;+|u|2u=0 xeR, 1>0,i=/—1

u(x, 0)= f(x) xeR,

(1.1)

where the solution u is complex-valued and f is some sufficiently smooth function
which decreases exponentially as |x| tends to infinity.
We have chosen this model equation for the following reasons:
103

0021-9991/88 $3 00

Copynght & 1988 by Academic Press, Inc
All nghts of reproduction in any form reserved



104 TOURIGNY AND MORRIS

(1) The CSE 1s one of the few nonlinear equations for which an implemen-
tation of the standard Galerkin method is still manageable.

(2) Much is known, both computationally and theoretically about the
equation. A convenient feature of the solution is that it satisfies an infinite number
of conservation laws [8] including

E,(t):fR|u(x,z)|2dx=const forall 120 (1.2)
2

Ez(t)zj 1o e n =L ue 0)* de=const  forall >0, (1.3)
R 2 53&' 4

These provide us with a simple means of analysing the numerical results.

(3) The CSE is only one particular member of a wider family of nonlinear
Schrédinger equations. These equations have found many applications in science
and should be of general interest. A conclusion about the effectiveness of the
numerical scheme for the CSE may lead to an efficient scheme for the solution 1n
the general case.

In Section 2, we introduce the notation and derive the approximation methods.
In Section 3, we state what and in what sense these methods are meant to
approximate and how we propose to judge the quality of the approximation. In
Section 4, we examine the numerical results obtained by the standard Galerkin
method. We devote some time to the question (which, for the CSE, is of impor-
tance) as to whether or not the enforcement of discrete analogs of the conservation
properties is advisable. Finally, in Section 5, we turn to the Galerkin method using
product approximation. Numerical results are compared and we also consider dif-
ferent choices of test and trial functions.

A Galerkin method leads to a spatial discretization of the original equation and
there remains to discretize in time. Naturally, our results will be affected by the way
in which this 1s done. We have opted for a simple Crank-Nicolson scheme which
will be used uniformly throughout. We study spatial convergence for a fixed time
step.

2. THE GALERKIN METHODS

We make the hypothesis that the solution of (1.1) has compact support on a
bounded open interval /= Ja, b[ during the time period [0, 7], where T is positive
and finite. Under this assumption, (1.1) is equivalent to

2
i?+%+lu|2u=0 xeL0<t<T
P (2.1)
u(x,0)=f(x) =xel
u(a, ty=u(b, t)=0 01T,

(2.1) is the problem we are going to solve
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We have to deal with complex-valued functions defined on 1. L*(I)= L? denotes
the space of square integrable functions. H'(I)= H' consists of the elements of L2
which have a square integrable distributional derivative. H}(I) = H} is the subspace
of H! formed by those elements which vanish at the endpoints of I. We use the
norms

lull 2= < ud'? Hull = {<uyu) + ' +u' Y},

where {u,v) =j', ut dx is the inner product in L? and «’ denotes the distributional
derivative of u.
Let {S,} be a sequence of finite-dimensional subspaces of H} such that

J S, is dense in H}.
n=1
We denote by v the dimension of S,. If {¢,}’_, forms a basis of S,, we write

S,=[4:, . ¢,]. The standard Galerkin method for (2.1) consists of defining a
sequence {u,} where the general term u,: [0, 7] — S, written as

v

ut)=Y a()g, of)eC

s=1

satisfies

ig(t), ¢ — Cu(1), 85 + uy()|* u,(1), 6> =0 forall ¢eS,

(2.2)
u(0)=f,.
The dot indicates differentiation with respect to time and f,, is the general term of a
sequence converging to f in H}.

Equation (2.2) constitutes a system of ordinary differential equations 1n time for
the unknown coefficients a(f). We introduce the uniform time grid
O=to<t,< -+ <ty =T of gridsize At =T/M, where MeN.

If uy=3%"_,a"¢, denotes an approximation to u,(t,), the Crank-Nicolson
scheme for Eq. (2.2) is obtained by replacing #,(t) by (1/4t)(uw™*"' —u?) and u,(¢)
by 4!+ ul):

(gt —un8) = (3t ey )

1 m+ 1 m 21 m+ 1 m —
+<'§(un +ul) E(u" +u,,),¢>—0

for all g S,, m=0,1,..,M—1,

0= f.. (23)
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We briefly discuss the construction of the subspaces S, = H}. Introduce the umform
partition

4, a=Xg<X| < - <X,y 1=b

and let A= (b—a)/(n+1).

With this partition, we may define finite-dimensional spaces of polynomial splines
and therefore give a precise meaning to the notions of interpolation and interpolant
[7]. We shall need the following standard polynomial spline spaces:

(1) Piecewse linear functions. We use a basis with typical element

(x—x,_4)
hj ls x_,*lsxsx]!
(%, 41— x)
¢,(x)= ———Hh ) X, KXEX,, 1,
0, otherwise.

(2) Cubic splines. We use a basis with typical element B/(x)=
B((x — x,_,)/h), where

Lx+2)3% —2<x< -1,
Lx+2)2~4x+1), —-1<x<0,

B(x)={ {—x+2) =4 —x+1)} 0<x<l,
Y —x+2)% 1<x<2,
0, otherwise.

(3) Hermite cubics. Typical basis functions are R(x)= R((x~—x,)/h) and
T(x)= T((x —x,)/h), where

(14 x)2(1—2x), —-1<x<0,
R(x)= ¢ (1 —x)*(1 +2x), 0<xgt,
0, otherwise;
x(x+ 1)? —1<x<0,
T(x)={ x(x+1)% 0<x<l,
0, otherwise.

Having chosen a particular spline space, S, will consist of those elements which
vanish at the endpoints of .
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Noting that u"=3"_, a"¢,, it is quite obvious that the implementation of a

scheme like (2.3) involves tedious calculations, even when the basis functions ¢,

vanish outside a small subinterval of I The Galerkin method with product

approximation consists of defining a sequence of functions such that the general
term u,(1)=3"_, a(t) ¢, satisfies

1ty (1), > — up(£), ¢ ) + <ya(1), > =0 forall geS,
U,(0)= £,

where y,(t) is the interpolant of |u,(f)|%u,(¢) in S, (hence a linear combination of
the ¢,’s). The time discretized version of (2.4) 1s

(2.4)

1 1
m+1__,m _ /(= m+1 my! ! ) % —_
(55 u,,),¢> (30 ) )+ o 63 =0
forallgeS,,m=0,.,.M—1, (2.5)
u2=fn9

where 7* is the interpolant of [3(w7*+ !+ u™)|? d(u ' +u).

3. SpATIAL CONVERGENCE

We study the convergence of the Galerkin methods (2.3), (2.5) for a fixed time
step 4t as n tends to infinity. We make the assumption that there is only one set
{u° .., u™} U H} such that

l<% (um+l_um)’ ¢> _ <% (um+l +u'")', ¢/>

2

1
+<’§(u"'“+u’”)

%(u”’“+u’"),¢>=0
forall ¢eH,,m=0,.,M—1, (3.1)
u=f.
We define
Er=[witdx and  Ep=| (i — 4w} dx

The two quantities

gr=| upPdx and  Epm={ {41 =) dx
I



108 TOURIGNY AND MORRIS

are of fundamental importance, for their behaviour entirely determines the quality
of the approximation. A proof of the following lemma can be found in [6].

Lemma (Characterization of spatial convergence). Ler {u°,..,u™} be the
solution of Eq. (3.1) and {uS, ..., uM} the solution of Eq.(2.3). These two statements
are equwalent:

lim E7™=ET and lim E3™=E7, m=0,1,.,M,

H— n— x

lhm |47 —u™| =0, m=0,1,.., M.

n— x
Moreover, if |E5™| is uniformly bounded in n and m, we have

lim |lu”—u™| =0, m=0,.., M. (3.2)

n— X

It will come as a reassuring, though perhaps not unexpected fact, that this result
remains valid for the Galerkin method with product approximation and piecewise
linear functions as test and trial functions. In this case, however, (3.2) requires the
additional hypothesis that also £ be uniformly bounded.

This brings to our attention the advantage of discrete analogs of the conservation
laws (1.2), (1.3). For instance, the approximating sequence defined by the standard
Galerkin method (2.3) is such that

Erll,m'+‘l = E'lhm, m =0, 1, ceey M_ 17 (33)

Byt =g [ gt P ug =gy, m=0,., M~1. (34)

I

Equation (3.3) is achieved by setting ¢=u"*!+u” in (2.3) and taking the
imaginary part; (3.4) is achieved by setting ¢ =u7*' —u™ in (2.3) and taking the
real part.

We can ascribe the fact that the solution of (2.3) fails to satisfy the discrete
analog of (1.3) to the use of the Crank—Nicolson scheme. It can easily be seen that
the solution of (2.5) satisfies neither of the analogs of (1.2) and (1.3). This is
inherent in the use of product approximation. However, as the above lemma
indicates, the absence of discrete analogs of the conservation laws does not rule out
spatial convergence.

Besides, the difficulty of satisfying discrete conservation laws like (3.3) in practice
while dealing with nonlinear systems of algebraic equations has long been
recognized [2]. As we shall demonstrate in our first numerical experiment, it is not
always advisable to alter a numerical method for the sake of enforcing a conser-
vation law.

Another point of interest is that we have no information about the validity of our
lemma for the method (2.5) when the subspaces do not consist of piecewise linear
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functions. It will be the purpose of our second numerical experiment to investigate
whether or not piecewise linear functions represent the most efficient choice.

4. FIRST NUMERICAL EXPERIMENT

In this section, we use the standard Galerkin method with piecewise linear
functions for the numerical solution of the CSE. Let

v

u ()= alt)¢, where gcj(t)=[

s=1

Re aj(t)]

Im a(1)

01
y(u,) = (uyu,) Au,,  where Az[—l 0]'

With (@), =g,, (2.2) assumes the matrix form
Ma+ Sa+ N(a)=0. (4.1)

In this expression, M and S are the obvious mass and stiffness matrices of order v
having matrices of order 2 as elements, and

(N(@)), = y(u, )9,
For the solution of (2.3), we adopt the following predictor—corrector pair

Ma* = Mg™ — At(Sa™ + N(a™))
At m+1_ At m ¢*+e”
(Megs)em=(m-Fs)em-am (*5E).

The initial vector @° is obtained readily from the interpolant of the 1nitial condition
f(x)

For piecewise linear functions, M and S are clearly tridiagonal matrices of order
v=n={(b—a)/h— 1. This scheme requires that M and M + (41/2) S be factorized.
This need be done only once and the LU decomposition can be kept in storage. At
each time step, 2 backward—forward solves must be performed. For piecewise linear
functions, M and S are clearly tridiagonal matrices of order n. Thus, each fac-
torization requires 18n operations (an operation being either a division or a mul-
tiplication) while the forward—backward solution requires 12n operations. All in all,
the algorithm involves (36 + 24(T/4t)) n operations. For our numerical experiment,
we choose as the initial condition

flx)= ﬁ {e““ 2 sech (ﬁ) + X 252 gech (_x\—/éS)}

with ¢, =10, c,=15andi=/—1.
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Fic 1 Standard Galerkin solution Predictor—corrector (1 iteration), h=14, 1= (a) modulus from
0 to 50s, (b) modulus from 22 to 27, (c) the two quantities in time
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FIGURE 1—Continued

This initial condition has the following interpretation: two wave forms (or solitons)
are separated by a distance of 25 units. As time progresses, the faster soliton
(velocity ¢,) eventually catches up with the slower one (velocity ¢,) and, according
to soliton theory [8], passes through it with only a phase shift resulting from the
collision.

To allow sufficient room for the interaction to take place, we choose ]—20, 80[
as the space interval and compute the solution for 0 < ¢ < 50. We implemented our
scheme and ran the program with h=1% and Ar=1; using one iteration of the
corrector. The results are depicted in Figs. 1a, b, and c. They are in qualitative
agreement with the behaviour predicted by the theory. The two wave forms collide
but recover their shapes afterwards (Fig. 1a) despite a strongly nonlinear interac-
tion (Fig. 1b). The evolution of the two quantities E7™ and E%™ in time is given by
Fig. 1c. The first quantity (full line) and the second quantity (broken line) have
been shifted to {; and 3F, respectively, for convenience. Interestingly enough, we
observe the following behaviour: the first quantity grows when the second decays
and conversely. The two quantities evolve linearly before and after the interaction
but experience a jump during the interaction. Figure 2 (a, b, and c¢) depicts the
results obtained with two iterations of the corrector. The additional iteration has a
significant effect on the phase of the solution and also on the general behaviour of
the two quantities.

58176.1-8
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Fic 2 Standard Galerkin solution Predictor—corrector (21terations), h=4, 1= (a) modulus
from 0 to 50s, (b) modulus from 22 to 27s, (c) the two quantities 1n time.
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FIGURE 2—Continued

In view of the fact that the approximation scheme (2.3) is such that
Erm+l=Fnm the fluctuations in the first quantity as shown in Figs. Ic and 2c
point out the difficulty of reproducing the conservation laws in practice while solv-
ing nonlinear systems. This seems to have stimulated the search for methods which
enforce conservation properties. For instance, Herbst et al. [4] implemented a
method with a variable time step able to preserve the first quantity exactly at each
time step. However, the method was found to be of little practical use because
nothing prevents the time step from decreasing to zero or, even worse, assuming
negative values.

In the remainder of this section, we present a method of Newton type which will
preserve the first quantity exactly at each time step. We should therefore be in a
position to decide whether such a special scheme presents some computational
advantage.

Suppose we decide to solve (2.3) by means of Newton’s iteration. The function to
iterate is

ran, 2= (143 5) e () am o (£F),

where a™ is kept fixed during the iteration process. Let J(a™, z) be the jacobian
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Fic 3 Standard Galerkin solution Modified Newton method, # =1 t=4. (a) modulus from 0 to
50s; (b) modulus from 22 to 27s, (c) the two quantities in time
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FIGURE 3—Continued

matrix of F(@™, z). Choosing @™ =z, as a starting value, the iteration sequence is
generated through

k(J(gma gk))—lF((_lm’ Zk)

(13
Irq

k+1

Noting that the first quantity E7™ takes the algebraic form
Epm=(a™) Ma™

We will not have zf Mz, =z, Mz, for each k, but only as k - oc. Therefore, we
adopt a modified Newton method by introducing a matrix P and consider the
sequence defined by

Zy 41— 2= — P(J(a™, z,)) "~ ' Fla™, Zx)
Premultiply by M
M(zy,1—2)= — MP(J(a™, z,)) " 'F(a™, z,).
Then by (2, , +2,)". Noting that M is symmetric, this yields

i Mz —2i Mz = — (2, +2,)TMP(J(a™, z)) "' Fla™, z,)
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FiG 4. Standard Galerkin solution Newton Method, A=14 t=4 (a) modulus from 0 to 50s,
(b) modulus from 22 to 27 s, (c) the two quantities in time
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FIGURE 4—Continued

We require that the right-hand side be zero. Substituting for (z, , , +z,) gives

[2z, — P(J(@™, z,)) 'F(e™, z,)]" MP(J(e™, z,)) " 'F(a™, z,) =0

and this provides a condition on the matrix P. Some choices of P are trivial and we

require that the entire expression vanish, not only part of it. For instance, assume
P =diag(n), where 7 is a scalar. Then, letting

(J(@™, z)) ' Fle™ z) =&

We see that

_ZZM_fk
[$¥2I9%

=2

Using the same initial condition, we ran the program with #=14 and 4r=1; The
iteration process was to be terminated whenever

lzx,s—zll <e= 1074,

The results (Fig.3a, b, and c) show that the first quantity was indeed exactly
conserved. Typically, the first iteration was performed with n~1 (n=1 is the

117



118 TOURIGNY AND MORRIS

FiG. 5. Standard Galerkin solution Newton Method, #=4, 1= (a) modulus from 0 to 50s,
(b) modulus from 22 to 27s, (c) the two quantities in time
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FIGURE 5—Continued

standard Newton method). After that, = would vary consistently between 10 =2 and
102 During the interaction, up to 3 iterations were needed but, otherwise, the
tolerance was met in two iterations. While the first quantity is exactly conserved, we
notice that the second quantity fluctuates a little. These variations tend to grow in
the last seconds (Fig. 3c).

For the sake of comparison, we also ran the standard Newton method
(Fig. 4a, b, ¢). The two quantities are very well behaved (Fig. 4c: the first quantity is
(very nearly) conserved at each time step and the second quantity does not
experience a sudden growth in the last seconds. A reduction to 4t = X indicates that
the standard Newton method produces the best solution (Fig. 5a, b, c).

From these facts, we conclude that our modified Newton method presents little
advantage upon the standard one. In fact, the bahaviour of the second quantity
should serve as a warning: a method designed to preserve the first quantity exactly
may cause perturbations in the second quantity, Our lemma of Section 3 shows that
the two quantities are equally important, therefore such schemes could perform
poorly.
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5. SECOND NUMERICAL EXPERIMENT

In this section, we examine the numerical performance of the modified version of
the Galerkin method using product approximation. We use the same notation as
before.

Product approximation consists of replacing y by its interpolant. Thus, when
piecewise linear functions are used, this interpolant is simply

S 1(e,(1) 4,

and (2.4) assumes the matrix form
Md+ Sa+ MF(a)=0 (5.1)

with (F(@)), = (2]a,)4a,.

We note that the nonlinear term, in its simplicity, does not involve the tedious
manipulations of the standard Galerkin method. We use the same predictor—correc-
tor pair as before for the solution of (2.5). With one iteration of the corrector, the
integration in time will again require (36 + 24(7T/4t)) n operations.

A pleasant feature of the product approximation version of the Galerkin method
is that the use of other polynomial splines becomes attractive: (5.1) allows the
programmer to implement the method for basis functions which have a larger sup-
port. It is natural to investigate whether more efficiency could be obtained through
an alternative choice of test and trial functions. When the method uses Hermite
cubics, the finite dimensional subspace is'

S.=[R,T,..R,, T,]

The Galerkin solution takes the form

u ()= 3 (&) R+ B(1) T,)

=1
and product approximation will lead to the system of ordinary differential
equations
ME+ SE+ MP(£)=0,

where

Y [ (g]e) Az,
(_é),—[ﬁ]] and (2’(_6)),—[ s ]

' It 1s understood that the basis functions at the extremities of the interval Ja, b[ mtust be such as to
satisfy the boundary condition It is clear how this 1s achieved from the defimtion of a typical basis
function as given 1n Section 2
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where B is the Jacobian matrix of y. M and S may be viewed as scalar matrices of
order 4n. They are band matrices with seven lower codiagonals and seven upper
codiagonals. We find that the factorization of such a matrix requires 224n
operations. The forward-backward solution is performed in 60n operations. Thus,
the number of operations involved in the time integration process is

T T\/b—a
—|n= 120 — —11.
(448 +120 At) n <448 + At)( ; l)

Let us now turn to cubic splines. Because the interpolation formula associated
with this choice of basis functions involves the solution of a linear system of
equations, the technique of product approximation cannot be used. However, this
difficulty is avoided by using piecewise linear functions as basis functions and cubic
splines as test functions. This is an instance of a Petrov-Galerkin method where test
and trial functions do not belong to the same piecewise polynomial space. For the
test functions, we wish to have a basis with only » elements. So we take?

T,=[B;,...B,,>]

This Petrov-Galerkin method may be written

S (<6, B> —A S, 0 (00<8) Bi>+ 3 2 (1)), B> =0
s=1 =1 J=1

for k=3, .., n—2. In matrix form

Md + Se+ MF(a)=0,

TABLE I

Number of Operations and Efficiency Condition

Method Number of operations Efficiency condition
T\(b—a
- 4— | —— —
(1) (36 +2 At>< A l)
T\({b-a
h-] 44 ol -
(h-h) ( 8+120At>< ; 1> hy, > 5hy

T\(b—-a 5

2 There 1s a shightly modified version of our lemma of Section 3 for this Petrov—Galerkin method The
set {u°, , uM} satsfies (3 1) only for all ¢ in the closure of {J,_, T, 1n H| Ths 1s simply due to the fact
that {J*_, T, 1s not dense in H} [6]
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FiG. 6. Galerkin solution with product approximation Predictor—corrector (1 iteration), ~=4,
1=45 (a) modulus from 0 to 50s; (b) modulus from 22 to 27s, (c) the two quantities in time.
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FIGURe 6—Continued

where M and S are now quindiagonal with blocks of order 2. The factorization
requires 50n operations; the backward—forward solution requires 20n operations.
The number of operations required for the time integration is therefore

T\(b—a
— —1].
(100+40At)( ; )

To each particular choice of basis functions, we have attached a number of
operations required for the integration in time. This number will provide a quan-

TABLE II

Results of the Experiment

Method Efficiency condition Optimal grid size Efficiency
(- — 4 —
3 1
(h-h) h,> 3 i Worse
he>3 i Better

)
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80.g

Fic 7. Galerkin solution with product approximation. Predictor-corrector (2 iterations), h=14,
7=+ (a) modulus from 0 to 50 s, (b) modulus from 22 to 27s; (c) the two quantities in time
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F\GURE 7—Continued

titative criterion upon which to base a comparison and judge the relative perfor-
mance of the schemes. In order to avoid confusion, we make the following pseudo-
definitions:

Given a fixed value of 41, a method will be said to converge m space for h = h(At)
if a further reduction of h has no perceptible effect on the plots of the numerical
solution. h(4¢) is then said to be the optimal grid size. For fixed T, At, and interval
I'=1a, b[, the number of operations is a function of # only. We shall say that the
most efficient method is the one for which convergence in space occurs for the least
number of operations. Take, for instance, the Galerkin method with product
approximation and piecewise linear functions as test and trial functions. For the
sake of brevity, it will be denoted (1-1). The number of operations was found to be

T\(b—a
(36+24ZE)( ; —1).

Now, take for example the (h~h) method (i.c., Hermite cubics as test and trial
function). There, the number of operations involved was

T\/b—a
448 + 120 — —-1).
(w940 2)(5%-1)
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40,q
60,9

eﬁ.u

Fic 8. Petrov-Galerkin solution with product approximation Predictor—corrector (1 iteration),
k=4 t=4{ (a) modulus from 0 to 50's, (b) modulus from 22 to 27 s, () the two quantities in time
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FIGURE 8—Continued

Thus, if A; and A, are the optimal grid size for (1-1) and (h-h), respectively, the
(h-h) method will be more efficient only if

T\(b—a T\(b—a
<448+120E)< p _1><<36+24I>< i —1).

hib—a—hy) 3641+ 24T
hob—a—hy) 448 At + 1207

That is

but since 4 and A¢ are small quantities

R 1
n 5
In other words, the extra complexity will be worth our while only if we can use a
grid 5 times coarser than for the piecewise lmnear functions. We do the same
calculation for the (l-c) method and obtain Table I, where the last column
tabulates the condition that the optimal grid sizes must fulfill in order for the
methods to be more efficient than'(l—l).

58176 1-9
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Fic 9. Petrov—Galerkin solution with product approximation Predictor—corrector (2 iterations),
h=14, t=14: (a) modulus from 0 to 50s, (b) modulus from 22 to 27s, (c) the two quantities in time.
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FIGURE 9—Continued

Before we go to the actual numerical experiments, let us remark that the number
of operations required for the factorization of matrices plays no role in the com-
parison. Indeed, factorization is performed only once when the predictor-corrector
pair is used. The situaton would be different if we used, say, Newton’s iteration.

We ran our programs with the same initial condition as in Section 4:
I=1-20,80[, T=50, and A¢= £ Table Il summarizes the results. Comparing
Fig. 1 (the standard Galerkin method with piecewise linear functions) and Fig. 6
(product approximation (l-1)), it appears that the two methods produce very
similar results. Even if the behaviour of the first quantity is somewhat different
(Fig. 1¢ and Fig. 6¢c), the fluctuations in both cases are equally smooth.

The Hermite cubics failed to meet the requirements. There is a significant dis-
crepancy between the accuracy gained and the work involved. The weakness of the
Hermute cubics may be attributed to the fact that it yields superfluous information;
namely the value of the x-derivative, which is not needed here. This doubles the
order of the system to be solved.

However, the (I-c) method performed well and seems to be slightly more efficient
than the (lI-1) method. It (Figs. 8a, b, and ¢) compared well with the standard
Galerkin method (Figs. 1a, b, and c¢) despite the fact that the two quantities
(Fig. 8c) undergo considerable fluctuations. We also tested our results with two
iterations of the corrector (Figs. 7a, b, c; Figs.9a, b, c). It appears that product
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approximation, in spite of the absence of conservation properties, is a valuable
alternative to the standard Galerkin method.

6. CONCLUSION

The purpose of this work was to study the effect of the product approximation
on the Galerkin solutions of the one-dimensional cubic Schrodinger equation. A
Crank—Nicolson scheme was used to discretize in time and the resulting nonlinear
system of algebraic equations was solved using a predictor—corrector pair. Under
these circumstances, we have found that, provided piecewise linear functions were
used as test functions, the product approximation version of the Galerkin method
produces results which compare well with those obtained by the standard Galerkin
method. Numerical experiments also suggests that more efficiency might be
obtained by using piecewise linear functions as trial functions and cubic splines as
test functions, even though in this case the two quantities £7" and E%™ undergo
considerable fluctuations.

Although we have restricted our attention to one particular nonlinear partial dif-
ferential equation, the conclusions reached in this study lead us to the following
conjecture: In the case where we are given a nonlinear problem for which the stan-
dard Galerkin method converges in space (in a sense to be specified), the authors
expect that the product approximation version of the Galerkin method would
produce similar results, provided the numerical solutions remain uniformly boun-
ded in some suitable norm.

Other types of nonlinearity should be investigated. Two-dimensional problems
would also be of considerable interest.
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